Abstract

One of the major drawbacks of the Gurson-type of porous plasticity models is the inability of these models to predict material failure under low stress triaxiality, shear dominated conditions. This study addresses this issue by combining the damage mechanics concept with the porous plasticity model that accounts for void nucleation, growth and coalescence. In particular, the widely adopted Gurson–Tvergaard–Needleman (GTN) model is extended by coupling two damage parameters, representing the volumetric damage (void volume fraction) and the shear damage, respectively, into the yield function and flow potential. The effectiveness of the new model is illustrated through a series of numerical tests comparing its performance with existing models. The current model not only is capable of predicting damage and fracture under low (even negative) triaxiality conditions but also suppresses spurious damage that has been shown to develop in earlier modifications of the GTN model for moderate to high triaxiality regimes. Finally the modified GTN model is applied to predict the ductile fracture behavior of a beta-treated Zircaloy-4 by coupling the proposed damage modeling framework with a recently developed J2–J3 plasticity model for the matrix material. Model parameters are calibrated using experimental data, and the calibrated model predicts failure initiation and propagation in various specimens experiencing a wide range of triaxiality and Lode parameter combinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.