Abstract
We study the isometric extension problem for Hölder maps from subsets of any Banach space intoc 0 or into a space of continuous functions. For a Banach spaceX, we prove that anyα-Hölder map, with 0<α ≤1, from a subset ofX intoc 0 can be isometrically extended toX if and only ifX is finite dimensional. For a finite dimensional normed spaceX and for a compact metric spaceK, we prove that the set ofα’s for which allα-Hölder maps from a subset ofX intoC(K) can be extended isometrically is either (0, 1] or (0, 1) and we give examples of both occurrences. We also prove that for any metric spaceX, the above described set ofα’s does not depend onK, but only on finiteness ofK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.