Abstract

We show that deterministic collapsible pushdown automata of second order can recognize a language that is not recognizable by any deterministic higher-order pushdown automaton (without collapse) of any order. This implies that there exists a tree generated by a second order collapsible pushdown system (equivalently, by a recursion scheme of second order) that is not generated by any deterministic higher-order pushdown system (without collapse) of any order (equivalently, by any safe recursion scheme of any order). As a side effect, we present a pumping lemma for deterministic higher-order pushdown automata, which potentially can be useful for other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.