Abstract

Let $m$ be a positive integer. In this paper, we consider the exponential Diophantine equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$ and we show that it has only unique positive integer solution $(x,y,z)=(1,1,2)$ for all $ m>1. $ The proof depends on some results on Diophantine equations and the famous primitive divisor theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.