Abstract

AbstractThis paper proposes explicit solutions for the algebraic Riccati matrix equation. For single‐input systems in controllable canonical form, the explicit Hermitian solutions of the non‐homogeneous Riccati equation are obtained using the entries of the system matrix, the closed‐loop system matrix, and the weighting matrix. The unknown entries of the closed‐loop system matrix are solved by scalar quadratic equations. For a homogeneous Riccati equation with a zero weighting matrix, the explicit solutions are proposed analytically in terms of the system eigenvalues. The advantages of the explicit solutions are threefold: first, if the system is controllable, the solution is directly given and the invariant subspaces of the Hamiltonian matrix are not required; second, if the system is near singularity, the explicit solution has higher numerical precision compared with the solution computed by numerical algorithms; third, for a real system in the controllable canonical form, the non‐negativity can be analysed for the explicit almost stabilizing solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.