Abstract
Computational simplicity is one of the most important aspects to take into account in robust model predictive control (MPC). In dead-time processes, it is common to use an augmented state-space representation in order to apply robust MPC strategies but, this procedure may affect computational aspects. In this paper, explicit dead-time compensation will be used to avoid augmented representation. This technique will be analyzed in terms of robust stability and constraint satisfaction for discrete-time linear systems. The results of this discussion will be applied to a robust tube-based MPC strategy which is able to guarantee robust stability and constraint satisfaction of a dead-time system by considering a prediction model without dead-time. Moreover, taking advantage of the proposed scheme, the robust MPC will be particularized for first-order plus dead-time models which simplifies significantly controller synthesis. The proposed dead-time compensation method will be applied to different robust MPC strategies in two case studies: (i) a simulated quadruple-tank system, and (ii) an experimental scaled laboratory heater process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.