Abstract

Abstract For m, d ∈ ℕ, a jittered sample of N = m d points can be constructed by partitioning [0, 1]d into m d axis-aligned equivolume boxes and placing one point independently and uniformly at random inside each box. We utilise a formula for the expected ℒ2−discrepancy of stratified samples stemming from general equivolume partitions of [0, 1]d which recently appeared, to derive a closed form expression for the expected ℒ2−discrepancy of a jittered point set for any m, d ∈ ℕ. As a second main result we derive a similar formula for the expected Hickernell ℒ2−discrepancy of a jittered point set which also takes all projections of the point set to lower dimensional faces of the unit cube into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.