Abstract

Let $r\geq 2$ and $s\geq 2$ be multiplicatively dependent integers. We establish a lower bound for the sum of the block complexities of the $r$-ary expansion and the $s$-ary expansion of an irrational real number, viewed as infinite words on $\{0,1,\ldots ,r-1\}$ and $\{0,1,\ldots ,s-1\}$, and we show that this bound is best possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.