Abstract

We study first-order logic over unordered structures whose elements carry a finite number of data values from an infinite domain which can be compared wrt. equality. As the satisfiability problem for this logic is undecidable in general, in a previous work, we have introduced a family of local fragments that restrict quantification to neighbourhoods of a given reference point. We provide here the precise complexity characterisation of the satisfiability problem for the existential fragments of this local logic depending on the number of data values carried by each element and the radius of the considered neighbourhoods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.