Abstract

This paper studies the dissipative generalized surface quasi-geostrophic equations in a supercritical regime where the order of the dissipation is small relative to order of the velocity, and the velocities are less regular than the advected scalar by up to one order of derivative. We also consider a non-degenerate modification of the endpoint case in which the velocity is less smooth than the advected scalar by slightly more than one order. The existence and uniqueness theory of these equations in the borderline Sobolev spaces is addressed, as well as the instantaneous smoothing effect of their corresponding solutions. In particular, it is shown that solutions emanating from initial data belonging to these Sobolev classes immediately enter a Gevrey class. Such results appear to be the first of its kind for a quasilinear parabolic equation whose coefficients are of higher order than its linear term; they rely on an approximation scheme which modifies the flux so as to preserve the underlying commutator structure lost by having to work in the critical space setting, as well as delicate adaptations of well-known commutator estimates to Gevrey classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.