Abstract
AbstractThis paper concerns steady plane periodic waves on the surface of an ideal liquid flowing above a horizontal bottom. The flow is irrotational. The volume flow rate is denoted by Q, the velocity potential by ø, the period in ø of the waves by 2L, and the maximum angle of inclination between the tangent to the surface and the horizontal by θm.Krasovskii (12) established that, at each fixed Q and L, there exist wave solutions for each value of θm strictly between zero and ⅙π. We establish that, at each fixed Q and L, there exist wave solutions for each value of qc strictly between c and zero. Here qc is the flow speed at the crest, andwhere g is the acceleration due to gravity. Krasovskii's set of solutions is included in the set that we obtain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.