Abstract
We consider an optimal control problem for nonlinear degenerate elliptic problems involving an anisotropic p-Laplacian and Dirichlet boundary conditions. We take the matrix-valued coefficients A(x) of such system as a control in \(L^{p/2}(\varOmega ;\mathbb {R}^{\frac{N(N+1)}{2}})\). One of the important features of the admissible controls is the fact that eigenvalues of the coefficient matrices may vanish in \(\varOmega \). Equations of this type may exhibit the Lavrentiev phenomenon and nonuniqueness of weak solutions. Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of this optimal control problem in the class of weak solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.