Abstract

Let a communication network be modeled by a graph G = (V,E) of n nodes and m edges, where with each edge is associated a pair of values, namely its cost and its length. Assume now that each edge is controlled by a selfish agent, which privately holds the cost of the edge. In this paper we analyze the problem of designing in this non-cooperative scenario a truthful mechanism for building a broadcasting tree aiming to balance costs and lengths. More precisely, given a root node r ∈V and a real value λ≥1, we want to find a minimum cost (as computed w.r.t. the edge costs) spanning tree of G rooted at r such that the maximum stretching factor on the distances from the root (as computed w.r.t. the edge lengths) is λ. We call such a tree the Minimum-cost λ -Approximate Shortest-paths Tree (λ-MAST).First, we prove that, already for the unit length case, the λ-MAST problem is hard to approximate within better than a logarithmic factor, unless NP admits slightly superpolynomial time algorithms. After, assuming that the graph G is directed, we provide a (1 + ε)(n – 1)-approximate truthful mechanism for solving the problem, for any ε> 0. Finally, we analyze a variant of the problem in which the edge lengths coincide with the private costs, and we provide: (i) a constant lower bound (depending on λ) to the approximation ratio that can be achieved by any truthful mechanism; (ii) a \((1+ {{n-1}\over{\lambda}})\)-approximate truthful mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call