Abstract

We show that a class of reaction diffusion systems on RNgenerates an asymptotically compact semiflow on the Banach space of bounded uniformly continuous functions. If such a semiflow is dissipative, then a unique, non-empty, compact minimal attractor is known to exist. We apply this abstract result to obtain the existence of the compact minimal attractor for reaction diffusion systems on RNthat contain appropriate weight functions. We also state conditions, which guarantee that the attractor has finite Hausdorff-dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.