Abstract
Most convergence results for adaptive identification algorithms have been developed in sufficient order settings, involving an unknown system with known degree. Reduced-order settings, in which the degree of the unknown system is underestimated, are more common, but more difficult to analyze. Deducing stationary points in these cases typically involves solving nonlinear equations, hence the sparseness of results for reduced-order cases. If we allow ourselves the tractable case in which the input to an identification experiment is white noise, we shall show that the Steiglitz-McBride method (1965) indeed admits a stationary point in reduced-order settings for which the resulting model is stable. Our interest in this study stems from a previous result, showing an attractive a priori bound on the mismodeling error at any such stationary point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.