Abstract

Using techniques from asymptotic analysis, the second author has recently identified equations that generalize the classical Marguerre-von Kármán equations for a nonlinearly elastic shallow shell by allowing more realistic boundary conditions, which may change their type along the lateral face of the shell. We first reduce these more general equations to a single “cubic” operator equation, whose sole unknown is the vertical displacement of the shell. This equation generalizes a cubic operator equation introduced by M. S. Berger and P. Fife for analyzing the von Kármán equations for a nonlinearly elastic plate. We then establish the existence of a solution to this operator equation by means of a compactness method due to J. L. Lions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.