Abstract
This paper is concerned with the existence of optimal controls for backward stochastic partial differential equations with random coefficients, in which the control systems are represented in an abstract evolution form, i.e. backward stochastic evolution equations. Under some growth and monotonicity conditions on the coefficients and suitable assumptions on the Hamiltonian, the existence of the optimal control boils down to proving the uniqueness and existence of a solution to the stochastic Hamiltonian system, i.e. a fully coupled forward–backward stochastic evolution equation. Using some a prior estimates, we prove the uniqueness and existence of the solution via the method of continuation. Two examples of linear–quadratic control are solved to demonstrate our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.