Abstract
We extend and strengthen both Athey’s (2001) and McAdams’(2003) results on the existence of monotone pure strategy equilibria in Bayesian games. We allow action spaces to be compact locally-complete metrizable semilatttices and can handle both a weaker form of quasisupermodularity than is employed by McAdams and a weaker single-crossing property than is required by both Athey and McAdams. Our proof — which is based upon contractibility rather than convexity of best reply sets — demonstrates that the only role of single-crossing is to help ensure the existence of monotone best replies. Finally, we do not require the Milgrom-Weber (1985) absolute continuity condition on the joint distribution of types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.