Abstract

We prove existence of L2-weak solutions of a quasilinear wave equation with boundary conditions. This describes the isothermal evolution of a one dimensional non-linear elastic material, attached to a fixed point on one side and subject to a force (tension) applied to the other side. The L2-valued solutions appear naturally when studying the hydrodynamic limit from a microscopic dynamics of a chain of anharmonic springs connected to a thermal bath. The proof of the existence is done using a vanishing viscosity approximation with extra Neumann boundary conditions added. In this setting we obtain a uniform a priori estimate in L2, allowing us to use L2 Young measures, together with the classical tools of compensated compactness. We then prove that the viscous solutions converge to weak solutions of the quasilinear wave equation strongly in Lp, for any that satisfy, in a weak sense, the boundary conditions. Furthermore, these solutions satisfy, beside the local Lax entropy condition, the Clausius inequality: the change of the free energy is bounded by the work done by the boundary tension. In this sense they are the correct thermodynamic solutions, and we conjecture their uniqueness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.