Abstract
AbstractLet K be a compact metrizable group and Γ be a finitely generated group of commuting automorphisms of K. We show that ergodicity of Γ implies Γ contains ergodic automorphisms if center of the action, Z(Γ)={α∈Aut(K)∣α commutes with elements of Γ} has descending chain condition. To explain that the condition on the center of the action is not restrictive, we discuss certain abelian groups which, in particular, provide new proofs to the theorems of Berend [Ergodic semigroups of epimorphisms. Trans. Amer. Math. Soc.289(1) (1985), 393–407] and Schmidt [Automorphisms of compact abelian groups and affine varieties. Proc. London Math. Soc. (3) 61 (1990), 480–496].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.