Abstract

Let J be an abelian surface with a generic ample line bundle Open image in new window. For n≥1, the moduli space MJ(2,0,2n) of Open image in new window(1)-semistable sheaves F of rank 2 with Chern classes c1(F)=0, c2(F)=2n is a singular projective variety, endowed with a holomorphic symplectic structure on the smooth locus. In this paper, we show that there does not exist a crepant resolution of MJ(2,0,2n) for n≥2. This certainly implies that there is no symplectic desingularization of MJ(2,0,2n) for n≥2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.