Abstract

Heterometal materials based on glycidoxypropyltrialkoxysilane and titaniumalkoxide are used for optical applications and require a high homogeneity on the molecular level. The presence of heterometal titanosiloxanes, their distribution and hydrolytic stability should influence the homogeneity of these materials. 29Si and 17O NMR spectroscopy has been used to investigate sols with molar ratios Si : Ti = 1 and H2O : OR (H) = 0.5 − 2.0 and their gels after heat treatment at 130°C. The presence of Si—O—Ti bonds in sols with a low water content (H < 0.2) and in the corresponding gels was identified by the high-field shift of the 29Si NMR signals of T1 and T2 units of up to 2–3 ppm compared to corresponding signals of homo-condensed Si—O—Si bonds. The existence of Si—O—Ti bonds in the sols is supported by 17O NMR spectra which show a characteristic signal around 340 ppm. A cleavage of the Si—O—Ti bonds occurs with increasing water/OR ratio in the sols. The cleavage of the heterometal bonds and the building up of homo-condensed species leads to a separation into areas with predominantly Ti—O—Ti and Si—O—Si bonds resulting in a decreased molecular homogeneity of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.