Abstract
Black phosphorus is a bulk solid allotrope of elemental phosphorus and can be seen as an infinite stack of phosphorene sheets. It is interesting from a technological point of view as well as from an electronic structure perspective due to the importance of electron correlation effects. In a recent paper [M. Schütz, L. Maschio, A. J. Karttunen and D. Usvyat, J. Phys. Chem. Lett., 2017, 8, 1290-1294] a highly accurate exfoliation energy has been computed. Building upon these results we carefully benchmark various dispersion-corrected density functional approximations. The choice of the range-separating function that suppresses London dispersion at short interatomic distances apparently has a substantial influence on the results. Having chosen the suitable functional, we have computed the thermal expansion coefficients of black phosphorous via a quasi-harmonic approximation. The computed coefficients manifest a strong anisotropy between the two in-plane directions. Our calculations, however, do not support the existence of negative thermal expansion in black phosphorus, as reported in some theoretical studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.