Abstract

Three formulations of exact solution algorithms to the system of determined pseudorange equations are derived. It is demonstrated that pseudorange equations are hyperbolic in nature and may have two solutions, even when the emitter configuration is nonsingular. Conditions for uniqueness and for the existence of multiple solutions are derived in terms of the Lorentz inner product. The bifurcation parameter for systems of pseudorange equations is also expressed in term of the Lorentz functional. The solution is expressed as a product of the geometric dilution of precision (GDOP) matrix, representing the linear part of the solution, and a vector of nonlinear term. Using this formulation stability of solutions is discussed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.