Abstract

AbstractIn this chapter the vertex separation problem (VSP) is approached. VSP is NP-hard with important applications in VLSI, computer language compiler design, and graph drawing, among others. In the literature there are several exact approaches to solve structured graphs and one work that proposes an integer linear programming (ILP) model for general graphs. Nevertheless, the model found in the literature generates a large number of variables and constraints, and the approaches for structured graphs assume that the structure of the graphs is known a priori. In this work we propose a new ILP model based on a precedence representation scheme, an algorithm to identify whether or not a graph has a Grid structure, and a new benchmark of scale-free instances. Experimental results show that our proposed ILP model improves the average computing time of the reference model in 79.38 %, and the algorithm that identifies Grid-structured graphs has an effectiveness of 100 %.KeywordsVertex Separator Problem (VSP)Very Large Scale Integration (VLSI)ILP ModelAdjacent DegreeGrid GraphThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.