Abstract

AbstractExact discretization formulae are established for a first-order stochastic differential equation driven by a fractional noise of either long memory or antipersistent type. We assume that the underlying process is sampled at non-unit equispaced observational intervals. Using fractional algebra techniques the exact discretization formulae are derived in terms of confluent hypergeometric and incomplete gamma functions which admit infinite order series expansions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.