Abstract

Although being the fundamental semiclassical approximation method mainly used in quantum mechanics and optical waveguides, JWKB method along with the application of the associated JWKB asymptotic matching rules is known to give exact solutions for the Quantum Harmonic Oscillator (QHO). Asymptotically matched JWKB solutions are typically accurate or exact in the entire domain except for a narrow domain around the classical turning points where potential energy equals the total energy of the related quantum mechanical system. So, one has to cope with this diverging behavior at the classical turning points since it prohibits us from using continuity relations at the related boundaries to determine the required JWKB coefficients. Here, a computational diagram and related mathematica codes to surmount the problem by applying parity matching for even and odd JWKB solutions rather than boundary continuities are being presented. In effect, JWKB coefficients as well as the conversion factor for the dimensionless form of the Schrodingers equation, which is common to both exact and JWKB solutions, is being successfully obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.