Abstract
Empirical studies of dispersal indicate that decisions to immigrate are patch-type dependent; yet theoretical models usually ignore this fact. Here, we investigate the evolution of patch-type dependent immigration of a population inhabiting and dispersing in a heterogeneous landscape, which is structured by patches of low and high reward. We model the decision to immigrate in detail from a mechanistic underpinning. With the methods of adaptive dynamics, we derive both analytical and numerical results for the evolution of immigration when life-history traits are patch-type dependent. The model exhibits evolutionary branching in a wide parameter range and the subsequent coevolution can lead to a stable coexistence of a generalist, settling in patches of any type, and a specialist that only immigrates into patches of high reward. We find that individuals always settle in the patches of high reward, in which survival until maturation, relative fecundity and emigration probability are high. We investigate how the probability to immigrate into patches of low reward changes with model parameters. For example, we show that immigration into patches of low reward increases when the emigration probability in these patches increases. Further, immigration into patches of low reward decreases when the patches of high reward become less safe during the dispersal season.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.