Abstract

Abstract The microstructure and texture evolution in an aluminum–lithium alloy showing adiabatic shear band after dynamic deformation has been carried out using electron backscatter diffraction and bulk texture measurement using X-ray diffraction. The uniquely heterogeneous microstructure is characterized by fine sub-micron grains of the matrix phase and small spherical precipitates while the region away from the shear band shows deformed elongated grains and plate shaped precipitates. The interface between the shear band and rest of the sample shows unique deformation features indicating the existence of both continuous as well as geometric dynamic recrystallization in the impacted sample. It is inferred that the coarse grain size accompanied with heterogeneous deformation conditions during dynamic loading leads to the coexistence of competing recrystallization mechanisms in aluminum–lithium alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.