Abstract

A set of evolution equations for dislocation density is developed incorporating the combined evolution of statistically stored and geometrically necessary densities. The statistical density evolves through Burgers vector-conserving reactions based in dislocation mechanics. The geometric density evolves due to the divergence of dislocation fluxes associated with the inhomogeneous nature of plasticity in crystals. Integration of the density-based model requires additional dislocation density/density-flux boundary conditions to complement the standard traction/displacement boundary conditions. The dislocation density evolution equations and the coupling of the dislocation density flux to the slip deformation in a continuum crystal plasticity model are incorporated into a finite element model. Simulations of an idealized crystal with a simplified slip geometry are conducted to demonstrate the length scale-dependence of the mechanical behavior of the constitutive model. The model formulation and simulation results have direct implications on the ability to explicitly model the interaction of dislocation densities with grain boundaries and on the net effect of grain boundaries on the macroscopic mechanical response of polycrystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.