Abstract

This paper presents a new implementation of the dual reciprocity method (DRM) in connection with the dual interpolation boundary face method (DiBFM) for the Poisson equation. In DiBFM, the nodes of an element are categorized into two groups: (i) source nodes (ii) virtual nodes. First layer interpolation is used to interpolate the physical variables, while boundary integrals are evaluated on the source nodes only. Moreover, moving least squares (MLS) interpolation is used and provides additional constraints equations to establish the relationship between source and virtual nodes. Additionally, augmented thin plate spline (ATPS) is used to better interpolate the non-homogeneous term. Finally, it is claimed that the proposed method is much superior to the DRM for Poisson type equation with different geometries, especially for complex geometry. Numerical examples are evaluated and compared with the DRM to ensure the superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.