Abstract

The Euler characteristic plays an important role in many subjects of discrete and continuous mathematics. For noncompact spaces, its homological definition, being a homotopy invariant, seems not as important as its role for compact spaces. However, its combinatorial definition, as a finitely additive measure, proves to be more applicable in the study of singular spaces such as semialgebraic sets, finitely subanalytic sets, etc. We introduce an interesting integral by means of which the combinatorial Euler characteristic can be defined without the necessity of decomposition and extension as in the traditional treatment for polyhedra and finite unions of compact convex sets. Since finite unions of closed convex sets cannot be obtained by cutting convex sets as in the polyhedral case, a separate treatment of the Euler characteristic for functions generated by indicator functions of closed convex sets and relatively open convex sets is necessary, and this forms the content of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call