Abstract

We study the pressureless Euler equations with nonlocal alignment interactions, which arises as a macroscopic representation of the Cucker–Smale model on animal flocks. For the Euler-alignment system with bounded interactions, a critical threshold phenomenon is proved in Tadmor and Tan (2014 Phil. Trans. R. Soc. A 372 20130401), where global regularity depends on initial data. With strongly singular interactions, global regularity is obtained in Do et al (2018 Arch. Ration. Mech. Anal. 228 1–37), for all initial data. We consider the remaining case when the interaction is weakly singular. We show a critical threshold, similar to the system with bounded interaction. However, different global behaviors may happen for critical initial data, which reveals the unique structure of the weakly singular alignment operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.