Abstract

We compute the on-shell Euclidean action of Schwarzschild-de Sitter black holes, and take their contributions in the gravitational path integral into account using the formalism of constrained instantons. Although Euclidean de Sitter black hole geometries have conical singularities for generic masses, their on-shell action is finite and is shown to be independent of the Euclidean time periodicity and equal to minus the sum of the black hole and cosmological horizon entropy. We apply this result to compute the probability for a nonrotating, neutral arbitrary mass black hole to nucleate spontaneously in empty de Sitter space, which separates into a constant and a “non-perturbative” contribution, the latter corresponding to the proper saddle-point instanton in the Nariai limit. We also speculate on some further applications of our results, most notably as potential non-perturbative corrections to correlators in the de Sitter vacuum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.