Abstract

The detection of marine oil slicks using satellite sun-glittered optical imagery has been recently assessed. As the nature of the imaging mechanism involves the altered features of the wind-roughened oil-covered sea surface, it is expected that the radiation reflected from the oil-water system carries information about the physical properties of the floating oil layer. In this paper, we report an investigation on the capability to retrieve the average thickness of thin marine oil slicks by using the sun-glittered component of the solar radiation in the near-infrared (NIR) bands of MEdium Resolution Imaging Spectrometer Instrument (MERIS) and MODerate Resolution Imaging Spectroradiometer (MODIS) images. The developed procedure exploits the Cox and Munk model to compute sun glint reflectance at the sea surface level for both clean and oil polluted sea surface as well. It is assumed that the Fresnel reflection coefficient of the oil-water system carries the relevant optical dependence on oil layer thickness and oil type. The expected oil-water system reflectance is computed by taking into account the non-uniform spatial distribution of the oil volume. This is achieved by considering a pdf of oil thicknesses that matches the observations on controlled oil slicks already reported in the scientific literature. MERIS and MODIS images gathered during the Lebanon oil spill occurred on July and August 2006 were selected as case study. When available, co-located SAR imagery was also considered to corroborate NIR-detected oil slicks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.