Abstract
We develop a thorough mathematical analysis to deduce conditions for the accuracy and convergence of different approximations of the memory integral in the Mori-Zwanzig (MZ) equation. In particular, we derive error bounds and sufficient convergence conditions for short-memory approximations, the t-model, and hierarchical (finite-memory) approximations. In addition, we derive useful upper bounds for the MZ memory integral, which allow us to estimate a priori the contribution of the MZ memory to the dynamics. Such upper bounds are easily computable for systems with finite-rank projections. Numerical examples are presented and discussed for linear and nonlinear dynamical systems evolving from random initial states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.