Abstract

Artificial rainfall is widely used to study the surface runoff process but several problems are related to the reproducibility of natural rainstorms. A new rainfall simulator and a collection system were designed and tested in the laboratory and in the field. The rainfall simulator consists of four independent lines of low-cost pressure washing nozzles operated at a pressure of 80 mbar which number and position causes the rainfall intensity delivered on the plot. The spatial rainfall distribution and his intensity were measured with 63 rainfall gauges covering the whole plot The Joss Waldvogel Disdrometer was used to characterize the rainfall produced by the rainfall simulator. The drop size distribution was obtained. The drop size spectrum ranges from 0.25mm to 3.3mm and its shape is the same to that one produced by a natural rainfall. The rainfall intensity varies from approximately 31 to 62mm/h and it is sufficiently spatially uniform (Christiansen's coefficient of uniformity is 0.62 to 0.75) over the plot. Field tests were carried out in on a grassy field with silt-loam soil in Orroli, Sardinia in July and August 2010. The values of the mean rainfall intensities obtained from field data are in accord with the laboratory values. The field site measurement includes the surface runoff, evaluated using a dedicated tipping bucket flow meter, and the soil water content measured throughout the field experiments. The results showed the good performance of this new rainfall simulator that offers the possibility to reproduce natural rainfall to gather parameters needed for hydrologic modeling. The entire designed system offers the possibility to carry out reliable measurements of the surface runoff under different rain intensities and also allows one to measure this on different temporal scales by taking into account the differen environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.