Abstract

The performance seeking control (PSC) algorithm is designed to continuously optimize the performance of propulsion systems. The PSC algorithm uses a nominal propulsion system model and estimates, in flight, the engine deviation parameters (EDPs) characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated EDPs may not reflect the engine's actual off-nominal condition. This factor has a direct impact on the PSC scheme exacerbated by the open-loop character of the algorithm. In this paper, the effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the PSC algorithm to an F100 engine. An equivalence relation between the biases and EDPs stems from the analysis; therefore, it is undecided whether the estimated EDPs represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.