Abstract
Noncontacting, laser-based resonant ultrasound spectroscopy (RUS) was applied to characterize the microstructure of a polycrystalline sample of high purity copper. The frequencies and shapes of 40 of the first 50 resonant vibrational modes were determined. The sample's elastic constants, used for theoretical prediction, were estimated using electron backscatter diffraction data to form a polycrystalline average. The difference in mode frequency between theory and experiment averages 0.7% per mode. The close agreement demonstrates that, using standard metallurgical imaging as a guide, laser-based RUS is a promising approach to characterizing material microstructure. In addition to peak location, the Q of the resonant peaks was also examined. The average Q of the lasergenerated and laser-detected resonant ultrasound spectrum was 30% higher than a spectrum produced employing a piezoelectric transducer pair for excitation and detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.