Abstract

Abstract While the Errors-In-Variables (EIV) Model has been treated as a special case of the nonlinear Gauss- Helmert Model (GHM) for more than a century, it was only in 1980 that Golub and Van Loan showed how the Total Least-Squares (TLS) solution can be obtained from a certain minimum eigenvalue problem, assuming a particular relationship between the diagonal dispersion matrices for the observations involved in both the data vector and the data matrix. More general, but always nonsingular, dispersion matrices to generate the “properly weighted” TLS solution were only recently introduced by Schaffrin and Wieser, Fang, and Mahboub, among others. Here, the case of singular dispersion matrices is investigated, and algorithms are presented under a rank condition that indicates the existence of a unique TLS solution, thereby adding a new method to the existing literature on TLS adjustment. In contrast to more general “measurement error models,” the restriction to the EIV-Model still allows the derivation of (nonlinear) closed formulas for the weighted TLS solution. The practicality will be evidenced by an example from geodetic science, namely the over-determined similarity transformation between different coordinate estimates for a set of identical points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.