Abstract

This paper deals with bit error performance analysis of network-coded (NC) multiple access relay channels that operate in the decode and forward mode with error-prone relaying under quasi-static Rayleigh fading channels. It shows that the combination of channel coding and NC relaying can be regarded as a distributed coding scheme (DCS) if the error propagation problem is adequately addressed. For this purpose, methods based on NC soft information relaying (NC-SIR) and NC hard information relaying (NC-HIR) are investigated. In the framework of NC-SIR, the recently proposed Rayleigh-Gaussian log-likelihood-ratio-based Model is used for modelling the soft estimated symbols at the output of the relay soft encoder. The resulting scheme is referred to as NC-SIR-DCS. On the other hand, two NC-HIR-based schemes are studied and analyzed. The first employs automatic repeat request (ARQ) protocols between the relay node and each source node to ensure error-free propagation and is referred to as NC-ARQ-DCS, while the second performs a limiter function at the destination during iterative decoding as introduced in Thobaben (1) distributed and is referred to as NC-LFD-DCS. The SNR of the one-hop link, the equivalent to the sources-relay-destination links, is estimated in the case of NC-SIR-DCS and is lower bounded in the case of NC-LFD-DCS, while in the case of NC-ARQ-DCS, the average SNR cost per information bit due to the ARQ protocol is estimated. These processes allow tractable analysis of the bit error rate performances of the presented network-coded DCSs. Simulation results are carried out to assess the accuracy of the proposed bounds for different relay positions between source nodes and destination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call