Abstract

We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo. Unlike using variance reduction techniques, this naive estimator does not have a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges, which motivate one to look at naive estimators. In this paper we investigate this naive rare-event estimator, particularly its conservativeness level and the guarantees in using it to construct confidence bounds for the target probability. We show that the half-width of a valid confidence interval is typically scaled proportional to the magnitude of the target probability and inverse square-root with the number of positive outcomes in the Monte Carlo. We also derive and compare several valid confidence bounds constructed from various techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.