Abstract

Abstract Hybridizable discontinuous Galerkin (HDG) methods retain the main advantages of standard discontinuous Galerkin (DG) methods, including their flexibility in meshing, ease of design and implementation, ease of use within an $hp$-adaptive strategy and preservation of local conservation of physical quantities. Moreover, HDG methods can significantly reduce the number of degrees of freedom, resulting in a substantial reduction of computational cost. In this paper, we study an HDG method for the second-order elliptic problem with discontinuous coefficients. The numerical scheme is proposed on general polygonal and polyhedral meshes with specially designed stabilization parameters. Robust a priori and a posteriori error estimates are derived without a full elliptic regularity assumption. The proposed a posteriori error estimators are proved to be efficient and reliable without a quasi-monotonicity assumption on the diffusion coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call