Abstract

We revisit the proofs of convergence for a first order primal---dual algorithm for convex optimization which we have studied a few years ago. In particular, we prove rates of convergence for a more general version, with simpler proofs and more complete results. The new results can deal with explicit terms and nonlinear proximity operators in spaces with quite general norms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.