Abstract

In this paper we first prove the main conjecture for imaginary quadratic fields for all prime numbers p, improving slightly earlier results by Rubin. From this we deduce the equivariant main conjecture in the case that a certain μ-invariant vanishes. For prime numbers p ∤ 6 which split in K, we can prove the equivariant main conjecture using a theorem by Gillard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.