Abstract

The standard approach to study symmetric Hopf bifurcation phenomenon is based on the usage of the equivariant singularity theory developed by M. Golubitsky et al. In this paper, we present the equivariant degree theory based method which is complementary to the equivariant singularity approach. Our method allows systematic study of symmetric Hopf bifurcation problems in non-smooth/non-generic equivariant settings. The exposition is focused on a network of eight identical van der Pol oscillators with hysteresis memory, which are coupled in a cube-like configuration leading to S4-equivariance. The hysteresis memory is the source of non-smoothness and of the presence of an infinite dimensional phase space without local linear structure. Symmetric properties and multiplicity of bifurcating branches of periodic solutions are discussed showing a direct link between the physical properties and the equivariant topology underlying this problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call