Abstract

Concurrent linear springs belonging to systems that perform small out-of-plane oscillations around a stable equilibrium position are considered with a view to obtaining equivalent systems of three mutually orthogonal linear springs. Theorems defining their stiffness coefficients as well as their position, i.e. the position of the principal stiffness axes for which the potential energy does not contain mixed terms, are stated and proven. So far unknown invariants related to the sum of original and new stiffness coefficients are provided. In addition, the equivalent system of three mutually orthogonal dampers is obtained for any system of out-of-plane concurrent linear viscous. The theorem defining their damping coefficients and their directions, collinear with the principal damping axes for which the dissipative function does not contain mixed terms, is provided. The corresponding invariant for damping coefficients is presented, too. An ellipsoid of displacement and an ellipsoid of stiffness are discussed. Three illustrated examples are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.