Abstract

The question of the origins of nonexponential relaxation is addressed in terms of the probabilistic approach to relaxation. The interconnection between two differently rooted probabilistic models, i.e., between the parallel channel and the correlated cluster models, is presented. We show that clearly different probabilistic origins yield in both approaches a well-defined class of universally valid two-power-law responses with the stretched-exponential and exponential decay laws as special cases. The equivalence of both models indicates that variations in the local environment of the relaxing configurational units (parallel channel relaxation) can provide a basis for self-similar relaxation dynamics without the need for hierarchically constrained dynamics (correlated clusters relaxation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call