Abstract

We prove the equivalence of the curvature-dimension bounds of Lott–Sturm–Villani (via entropy and optimal transport) and of Bakry–Émery (via energy and \(\Gamma _2\)-calculus) in complete generality for infinitesimally Hilbertian metric measure spaces. In particular, we establish the full Bochner inequality on such metric measure spaces. Moreover, we deduce new contraction bounds for the heat flow on Riemannian manifolds and on mms in terms of the \(L^2\)-Wasserstein distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.