Abstract

In this paper we show a Clauser-Horne (CH) inequality for two three-level quantum systems or qutrits, alternative to the CH inequality given by Kaszlikowski et al. [Phys. Rev. A65, 032118 (2002)]. In contrast to this latter CH inequality, the new one is shown to be equivalent to the Clauser-Horne-Shimony-Holt (CHSH) inequality for two qutrits given by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)]. Both the CH and CHSH inequalities exhibit the strongest resistance to noise for a nonmaximally entangled state for the case of two von Neumann measurements per site, as first shown by Acin et al. [Phys. Rev. A65, 052325 (2002)]. This equivalence, however, breaks down when one takes into account the less-than-perfect quantum efficiency of detectors. Indeed, for the noiseless case, the threshold quantum efficiency above which there is no local and realistic description of the experiment for the optimal choice of measurements is found to be [Formula: see text] for the CH inequality, whereas it is equal to [Formula: see text] for the CHSH inequality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.